

Whale Hill Primary School

Fluency Progression Document
Updated September 2021

The NCETM set out 5 big ideas for mastery. These include coherence, representations, variation, mathematical thinking and fluency. They state that fluency demands more of students than memorisation of a single procedure or collection of facts. It encompasses a mixture of efficiency, accuracy and flexibility. Quick and efficient recall of facts and procedures is important in order for students to keep track of sub-problems, think strategically and solve problems. Fluency also demands the flexibility to move between different contexts and representations of mathematics, to recognise relationships and make connections, and to make appropriate choices from a whole toolkit of methods, strategies and approaches. This document aims to provide a structure in which teachers will explicitly teach these in a coherent and well thought out manner. The core mathematical concepts children need to become fluent are:

In order to achieve these, they will have to master the following skills

Subitising	the ability to see number as pattern, such as dice patterns. This supports pupils to see numbers within numbers and better regrouping (partitioning).
Regrouping (partitioning)	the ability to break numbers up and recombine them flexibly
Counting on and counting back	in a variety of interval steps
Reordering	knowing when and how to reorder to make calculations easier
Finding complements	links to reordering, identifying useful complements pairs or trios of 1, 10,60 etc.
Applying the inverse	use of fact family knowledge to 'undo'
Rounding	to a range of benchmark numbers
Estimation	both linear estimation on number lines and scales, and of quantities and calculations to support an increasing sense of what is reasonable
Compensation	to use rounding to add or subtract too much or too little and adjust accordingly
Rebalancing	to adjust the parts of addition and subtraction facts to make a calculation easier
$\mathbf{x} \div$ by powers of 10	
Doubling and halving	
Rearranging	to adjust the groups in multiplication and division to make a calculation easier

These are broken down below into skills which each year group should focus on.

Fluency skill	F2	1	2	3	4	5 and 6
Subitising	Recognise groups up to 5 without the need to count Identify 5 and use as a benchmark number e.g. Identify numbers within a whole se \dagger e.g. I can see 3 and 3 and 1. I can see 4 and 1 and 1 and 1 . I can see 4 and 3 .	Recognise groups (up to 5) without the need to count and use this to identify numbers up to 10				
Regrouping (partitioning)	Use 5 as a benchmark number Understand a whole = part and part Identify a group as a unit e.g. a unit is 2 teddies	'Think 10' - able to partition a number into 10 and some more e.g. Able to regroup a whole up to 10 into different parts and understand the commutativity of this	Regroup two digit numbers flexibly and in multiple ways e.g.	Regroup three digit numbers flexibly and multiple ways e.g. \square Regroup for addition to allow bridging through 10 and 100. Work flexibly and reason about the most efficient methods e.g.	Regroup four digit numbers flexibly and in multiple ways Regroup tenths and hundredths flexibly and in multiple ways e.g. In addition, regroup to 'think 100' with more	Use regrouping as a valid method in a multistep problem e.g. Relwores impoyirc after addond to nabe 1a apdisams mava apdsams man Regroup for multiplication in a variety of ways e.g. 24

		 Able to use 10 as a benchmark for regrouping for subtraction up to 20, using either the minuend or the subtrahend, bridging through ten e.g.		either the multiplier or the multiplicand e.g. 12 $12 \times 5=10 \times 5+2 \times 5$		Regroup fractions for multiplication (focus on this understanding before applying the rule) e.g.
Counting on and back	Be able to count fluently. To do this, children need to have mastered: The one-one principle - each object is counted once and given one counting tag The stable-order principle -we use the words in the same order	Count on to find the total and difference e.g. Count on to find the total and difference and link this knowledge to fact	Count in units where units are different e.g. $36=$ ten, twenty, thirty, one, two, three, four, five, six Count on and back from any two digit number and notice what changes	Count on and back from any three digit number and notice what changes and what doesn't e.g.	Count on and back from any four digit number and notice what changes and what doesn't e.g. Count on and back in multiples and make	

	The cardinal principle - the last number counted is the number of the set The abstraction principle - counting can apply to objects which are not tangible e.g. number of claps ■ The orderirrelevance principle - it doesn't matter which order we count objects in Be able to count on when an addend is given, rather than count all Be able to identify the largest number and count on from it	families e.g. Be able to skip count in $5 s$ and $10 s$ in a variety of ways, forwards, backwards and from different starting points.	Skip count in 3's in a variety of ways, forwards, backwards and from different starting points. Count on to find complements to benchmark numbers within 100 e.g.	Count on to find complements to benchmark numbers within 1000 e.g.日ッs-ns\% Understand the connections between the 3, 4 and 8 times tables and know strategies to be able to work out unknowns e.g.	counting connections e.g. counting in 6's, 60's, 600's, 0.6's Count in 25's, 50's, 0.1's and 0.001's Skip count all the times tables and understand the connections between them	
Reordering and finding complements		Reorder to ensure efficient counting e.g. \qquad 1xanmals?	Reorder numbers to find complements when adding three one digit numbers e.g. 6+7+4 (add the 6 and 4 first to make 10)	Reorder three or more numbers up to 1000 to find complements e.g. 75+95+25 can be reordered into 75+25 to make the benchmark 100, then add 95 to total 195. Or 6+9+4+5+1 (reorder to make number bonds to 10)	Reorder three or more numbers up to 10,000 to find complements e.g. $\begin{aligned} & 800+240+360 \\ & 310+700+30= \end{aligned}$ Reorder three or more numbers involving tenths and hundredths to find complements e.g. $1.5+3+0.5$	Reorder three or more numbers to find complements where the arrangement is more complex e.g. $£ 3.99+£ 7.80+£ 2.01$

					$2.5+25+5+2.5=$ (reorder to make wholes)	
Applying the inverse		Think addition to solve subtraction with numbers to 10 e.g. Think addition to solve subtraction with numbers up to 20 e.g.	Think addition to solve subtraction with numbers up to 100 e.g. Understand the relationship between multiplication and division. In multiplication, understand the interrelationship between multiplier, multiplicand and product. In division, understand the relationship between the dividend, divisor and quotient e.g. \qquad	Think addition to solve subtraction with numbers up to 1000 e.g. $528-265-\square=208+\square-329$ Think multiplication for division by grouping AND sharing e.g. By groapily Make further connections between multiplication and division and fractions		

Rounding				Identify the midpoint between a set of numbers under 1000 (and use this in order to understand rounding) e.g.	Round to the nearest 10 , 100,1000 and other units such as money and time	Round to the nearest $10,100,1000,10,000$ and other units such as money, time, decimal numbers, negative numbers Use rounding as an estimation for multiplication and

						division e.g. $635=32=$ (4) 5
Estimation			Estimate the distance of numbers from target numbers under 100 e.g. vimbera do largot cumbdis. \qquad $2515<$ andy from 20 1039	Estimate the distance of numbers from target numbers under 1000 to prepare for rounding e.g. 234 is 4 from 230 and 6 from 240. 240 is nearer to 230 than 240	Estimate the distance of numbers from target numbers up to 10,000, including tenths and hundredths to prepare for rounding e.g. 2134 is 34 from 2100 and 66 from 2200. 2134 is nearer to 2100 than 2200.	Estimate the distance of numbers from target numbers up to 1,000,000, including decimal numbers and negative numbers, to prepare for rounding e.g. 20,034 is 4 from 20,030 and 6 from 20,040. 20,034 is nearer to 20,030 than to 20,040.
Compensation			'Think 10', use benchmark numbers and compensate for trickier calculations e.g.	Use benchmark numbers and compensate for adding and subtracting numbers up to 1000, including money e.g. Use known facts to compensate for unknown multiplication	Use benchmark numbers and compensate for adding and subtracting numbers up to 10,000 , including money and time e.g. "I could think of $2550+490$ as compensation because adding 490 is like adding 500 and taking ten away. Now my calculation looks like this: $2550+500-10=3040$	Use number knowledge to look for 'nearly numbers' in calculations (including decimals) e.g. \square $1: 12,457-11$ RAP $=$

				and division calculations up to $12 x$ tables e.g.		
Rebalancing			Understand the concept of equal sum (that the sum remains equal when the addends are rebalanced in addition) with numbers up to 20 e.g. Understand the concept of equal difference (subtracting the same quantity from both subtrahend and minuend maintains the difference) with numbers up to 20 e.g.	Use the equal sum concept with numbers up to 1000 as a method to solve addition calculations e.g. Use the equal difference concept with numbers up to 1000 as a method to solve subtraction calculations e.g.	Use the equal sum concept with numbers up to 10,000, including units of time and money, as a method to solve addition calculations e.g. Use the equal difference concept with numbers up to 10,000, including units of time and money as a method to solve subtraction calculations	Apply the equal sum concept to a range of numbers and missing number problems (including units of time and money) e.g. Use the equal difference concept with a range of numbers, decimals and fractions e.g. 132.15 T - 12.897 -

					Use equal difference concept with tenths and simple fractions e.g.	
$X \div$ by powers of 10				Understand the concept of x and $\div 10$, and use known facts to multiply and divide by 10 and 100 e.g.	Understand the concept of x and $\div 10$, and use known facts to multiply and divide by 10,100 and 1000 e.g. $4000 \times 6,240$ $\div 4,750 \mathrm{~mm}=$ \qquad cm.	X and \div by powers of 10 , including 2 step problems. Includes decimals e.g. "I know that 10 million has 8 place values columns and 70 's. I know that $2 \times 5=10$. This already has one 0 , therefore I could use 2000×5000 or $200 \times$ 50,000"
Doubling and halving	Be able to find double of a number (up to 10) using concrete	Find doubles up to 20 and link this to repeated addition e.g.	Find doubles and near doubles with numbers	Find doubles and near doubles with numbers up to 1000 e.g. 70 + 硘 is Fe doubio 60 plas 10. it's also 15 less than coubic 70.	Find doubles and near doubles with numbers up to 10,000. Use doubling and halving to find unknown products in multiples of 10 e.g. $9 \times$	

						e.g. $5=<-10=2-582+$ \% $\times 4<4$ vy ten lnata urt Jn tekuladav, (Ux $1 \times \frac{1}{4}-\frac{3}{4}$

Adding I		Bonds to 10			Adding 10			Bridging/ compensating			YI facts	
Adding 2		Adding 0			Doubles			Near doubles				
$+$	0	1	2	3	4	5	6	7	8	9	10	
0	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$	
1	$1+0$	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$	
2	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$	
3	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$	
4	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$	
5	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$	
6	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$	
7	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$	
8	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$	
9	$9+0$	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$	
10	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$	

By the end of an academic year, pupils should be able to recall the Key Instant Recall Facts for

Fluency also means automatic recall of key facts. These are the facts which children should be able to recall at the end of each year group. They will need to explicitly be taught strategies (doubles and near doubles, compensating etc.) to work them out as well as lots of practice in order to achieve automaticity in recall.

-	0	1	2	3	4	5	6	7	8	9	10
1	1-0	--1									
2	$2-0$	2.1	2-2								
3	3-0	$3 \cdot 1$	3.2	3-3							
4	4-0	$4-1$	4-2	(-)	*-4						
5	$5=0$	5.1	5-2	S. 3	S-4	s-s					
6	6-0	s-:	6-2	6.2	6-4	6-5	6-6				
7	;-0	7.1	7-2	7.3	$7-4$	\%. 5	7-8	7-7			
8	8 -0	8.1	8-2	${ }^{3}-3$	8-4	s.s	8.6	${ }^{8.7}$	$8 \cdot 8$		
9	s-0	9.1	5-2	$9-3$	$9-4$	9.5	9.6	9.7	9-8	--9	
10	10-0	10.1	$10-2$	10.3	10.4	10.5	10.5	10.7	10-8	10.9	10-10
11		11.1	11-2	11.3	11-4	11.5	11.8	11.7	${ }^{11-8}$	$11-9$	11-10
12			12-2	12.3	12.4	12.5	12.6	${ }^{12-7}$	12-8	12.9	12-10
13				18-3	13.4	13.5	13.6	13.7	13.8	13.9	13-10
14					: $2 \cdot 4$	16.5	14.6	14.,	14.8	14.9	$1+-10$
15						1s-5	15.0	15.7	15.8	15.9	15-10
16							$16-4$	16.7	16.4	16.9	16-10
17								12.7	17.8	17.9	17-10
18									10-6	$\stackrel{18-}{9}$	${ }^{10-10}$
19										$\stackrel{19}{9}$	${ }^{19-10}$
20											20-10

Nursery	Reception	Year 1	Year 2
Recite the number names in order to 5. Touch count to 5. Use the language 'before', 'after', 'next Sort objects and say which group is more/less. Name simple shapes Recite the number names to 10 .	Name numbers in order to 10 and compare two numbers by saying which is more or less. Recognise quantities to 5 without counting up to 5 (subitise). To say one more than a given number up to 10 . Be able to partition numbers to 5 in different combinations of two groups. Recall number bonds to 10 including partitioning facts. To know the days of the week in order. Recall names of numbers to 20. Know one more and 1 less for number 0-20 Identify 2D shapes: circle, square, triangle, rectangle, hexagon, pentagon Identify 3D shapes: sphere, cylinder, cone, cubes, cuboids Know number doubles up to $5+5$.	Recite number names in order to 50 and beyond. To add one and two to any number. To know odd and even numbers to 20. Counts in 2's to 20. Count in 10's to 100. Count in 5's to 50 . To know number bonds to 10. Facts within 10 as above and related subtraction facts Know o'clock and half past times. To add 10 to a number. To know doubles and halves of numbers to 10. To know near doubles to 5 Know the seasons in order Know the months of the year in order Identify 3D shapes: pyramids, square based pyramids	Recite the number names in order to 100. To know number bonds to 10 and 20. To know doubles and halves of numbers to 20. To know near doubles to 10. Count in 2's To know multiplication and division facts for the 2 times table. To use bridging and compensation for addition facts to $10+10$. Count in 5's and 10's. To know multiplication and division facts for the 5 and 10 times table. Count in 3's to 36. To tell the time for o'clock, quarter past, half past and quarter to as well as intervals of 5 . To know multiplication and division facts for the 3 times table. Facts within 20 as above and related subtraction facts Number of minutes in an hour; number of hours in a day Coin recognition up to $£ 2$ and note recognition Know 100p=£1 Identify 2D shapes: quadrilaterals, regular and irregular polygons Identify 3D shapes: cuboids, prisms

Year 3	Year 4	Year 5	Year 6
To know the number bonds for all numbers up to 20. Count in 50's and 100's. Count in 3's. To know multiplication and division facts for the 3 times table. Count in 4's. To know multiplication and division facts for the 4 times table. Count up and down in tenths. Recognise decimal equivalents of tenths. Count in 8's. To know multiplication and division facts for the 8 times table. Recall facts about durations of time (seconds in a minute, minutes in an hour, hours in a day). To multiply and divide 1 digit numbers by 10 . Sums and differences between pairs of numbers which are multiples of 10 and 100. Doubles and halves of multiples of 10 or 100. Complements to 100. Complements to 60 (time). Complements of fractions with the same denominator that make 1 e.g. 3/7 $+4 / 7=1$ Number of days in each month and in a year including a leap year. Recognise right angles. Recognise parallel and perpendicular lines. Recognise horizontal and vertical.	To know number bonds to 100. Count in 25's and 1000's. Count in 6's. To know multiplication and division facts for the 6 times table. Count in 9's and 11's. To know multiplication and division facts for the 9 and 11 times table. Count in 7's and 12's. To know multiplication and division facts for the 7 and 12 times table. To recognise decimal equivalents of fractions ($1 / 2, \frac{1}{4}, \frac{3}{4}$, tenths and hundredths). Multiply and divide 1 and 2 digit numbers by 10 and 100. Doubles and halves of multiples of 10 , 100 or $1000(6+6,60+60,600+$ $600,6000+6000)$. Multiplication and division by zero and one facts. Conversion of kilometres to metres, hours to minutes, years to months, weeks to days. Complements of tenths that make 1. Complements of hundredths that make 1. Convert between decimals and fractions for $\frac{1}{2}, \frac{1}{4}, \frac{3}{4}$ and any number of tenths and hundredths. Read roman numerals to 100. Know right angles $=90$ degrees. Know the types of triangle (isosceles, equilateral, scalene).	Identify prime numbers up to $20(2,3$, $5,7,11,13,17,19)$. Recall metric conversions (1 kilogram $=$ 1000 grams, 1 kilometre $=1000$ metres, 1 metre $=100$ centimetres, 1 metre $=1000$ millimetres, 1 centimetre $=10$ millimetres 1 litre $=$ 1000 millilitres). Recall square numbers up to 12 squared and their square roots. Read Roman numerals to 1000. Know angles on a straight line $=180$ degrees. Know angles in a triangle $=180$ degrees. Know angles around a point $=360$ degrees.	Convert between decimals, fractions and percentages Identify prime numbers up to $50(2,3$, $5,7,11,13,17,19,23,27,29,31,37$, $41,43,47$). Illustrate and name parts of a circle, including radius, diameter and circumference and know that the diameter is twice the radius.

Sources and references

Herts for Learning Progression in Mental Maths: http://tannerswood.herts.sch.uk/wp-content/uploads/2016/04/Progression mental mathematics september_2017.pdf
White Rose Primary and EYFS schemes of learning: https://whiterosemaths.com/resources/schemes-of-learning/primary-sols/
Power Maths by Pearson: https://www.activelearnprimary.co.uk/start\#powermaths
Fluent in Five by Third Space Learning
Progression in Geometry document, Woodlands School: https://www.woodlands-sch.org.uk/wp-content/uploads/2015/08/Progression-in-geometry-doc.pdf
Mathematics Programme of Study: key stages 1 and 2. National curriculum in England:
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/335158/PRIMARY_national_curriculum_-_Mathematics_220714.pdf
Daniel Willingham: Is it true that some people just can't do math? https://www.aft.org/sites/default/files/periodicals/willingham.pdf
Jo Boaler, What is Number Sense: https://www.youcubed.org/resources/what-is-number-sense/
Jo Boaler, Fluency Without Fear: https://www.youcubed.org/evidence/fluency-without-fear/
Jenny Field, A whole school intervention for teaching, learning and understanding times tables: file:///C:/Users/staff/OneDrive/2019-
2020/Maths\%20Lead/Research/26932\%20FIELD_A_Whole_School_Intervention_for_Teaching_Learning_and\%20Understanding_Jan\%202020.pdf
Cambridge Maths Espresso: What are the issues in learning and assessing times tables? file:///C:/Users/staff/OneDrive/20192020/Maths\%20Lead/Research/espresso_1_learning_and_assessing_times_tables.pdf

Archemides NE Maths Hub: Teaching Times Tables: A Whole school Approach https://carmelarchimedesmathshub.org.uk/wp-content/uploads/2018/10/Times-Table-A-Whole-SchoolApproach.pdf

NCETM sources:

https://www.ncetm.org.uk/resources/50006
https://www.ncetm.org.uk/resources/40533
https://www.ncetm.org.uk/resources/45233
https://www.ncetm.org.uk/files/111737428/Fluency+handout.pdf
https://www.ncetm.org.uk/resources/49037
KIRFS: $\underline{h t t p s: / / r e d m i l e . l e i c s . s c h . u k / p d f s / c u r r i c u l u m / m a t h s-k i r f s . p d f ~}$
https://www.crownmeadow.worcs.sch.uk/news/detail/all-things-kirfs/
This policy has been adapted from the Fluency Progression document from Portland Spencer Academy

